Human Action Recognition by Conceptual Features
نویسندگان
چکیده
Human action recognition is the process of labeling a video according to human behavior. This process requires a large set of labeled video and analyzing all the frames of a video. The consequence is high computation and memory requirement. This paper solves these problems by focusing on a limited set rather than all the human action and considering the humanobject interaction. This paper employs three randomly selected video frames instead of employing all the frames and, Convolutional Neural Network extracts conceptual features and recognize the video objects. Finally, support vector machine determines the relation between these objects and labels the video. The proposed method have been tested on two popular dataset; UCF Sports Action and Olympic Sports. The results show improvements over state-of-the-art algorithms.
منابع مشابه
Face Recognition by Cognitive Discriminant Features
Face recognition is still an active pattern analysis topic. Faces have already been treated as objects or textures, but human face recognition system takes a different approach in face recognition. People refer to faces by their most discriminant features. People usually describe faces in sentences like ``She's snub-nosed'' or ``he's got long nose'' or ``he's got round eyes'' and so like. These...
متن کاملEnvironmental tranquility: A conceptual framework and urban architectural features
Stressful life and reduced well-being have always been an issue of lifestyle in modern society. Constructing a multidisciplinary conceptual framework of environmental tranquility and quality of life is required for the field of architectural development, improved environmental quality, and enhanced human well-being. This paper reviews the main concepts of tranquility, environmental quality, and...
متن کاملVehicle Logo Recognition Using Image Matching and Textural Features
In recent years, automatic recognition of vehicle logos has become one of the important issues in modern cities. This is due to the unlimited increase of cars and transportation systems that make it impossible to be fully managed and monitored by human. In this research, an automatic real-time logo recognition system for moving cars is introduced based on histogram manipulation. In the proposed...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملAnalysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model
Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...
متن کامل